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1. Introduction

In Part I of this work (Metcalfe and Orszag, 1975) the numerical
simulation of detailed turbulent flow fields was reported. Here in
Part II, these jet flow fields were used to study the radiated sound
field, and in addition, to extend and test the capabilities of the
turbulent jet simulation codes. The goal of this work is to complement
the theoretical and experimental research programs of the NASA Langley
Research Center on aerodynamic noise generation. The computer simulations
of Metcalfe and Orszag (1975) provide a variety of data that are very
difficult or even impossible to obtain by other methods.

The principal new result of the present work is the computation of
the radiated sound field from a turbulent jet. In addition, the computer
codes have been extended to account for the effects of compressibility and
eddy viscosity, and the treatment of the nonlinear terms of the Navier-
Stokes equations has been modified so that they can be computed in a
semi-implicit way. In Sec. 2 of this report is a summary of the flow
model and a description of the numerical methods used for its solution.

In Sec. 3, calculations of the radiated sound field are reported. In
Sec. 4, the extensions that have been made to the fundamental dynamical
codes are described. Finally, in Sec. 5, the current state-of-the-art for

computer simulation of turbulent jet noise is summarized.
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2. Flow Model and Numerical Methods

The basic flow model to determine the jet flow field is based on the
Navier-Stokes equations for incompressible flow. At low Mach number, the
acoustic components of the flow field are only weakly coupled to the shear
(rotational) components so that the flow field can be determined to a good
approximation by neglecting the weakly excited acoustic field. After the
rotational flow is determined by numerical integration of the Navier-Stokes
equations, the acoustic field can be determined by Lighthill's perturbation
procedure from the quadrupole moments of the flow field. The latter calcu-
lation is reported in Sec. 3.

The Navier-Stokes equations for incompressible flow are

v

Ft-a-v-v‘\fa-vp + Wiy (1)

T.39=0 (2)

where 3(?,:) is the velocity at X, t, p(?,t) is the pressure, Vv 1is the
kinematic viscosity, and the density p 1is assumed to be 1. The numerical
simulation of a turbulent jet flow field using (1)-(2) is beset with two
major difficulties: first, the required computer resolution to calculate a
high Reynolds number flow accurately 1is enormous; and, second, the boundary
conditions that must be imposed to simulate a jet are very difficult to
impose. Because of these problems, the flow model was further simplified as
discussed below. Laboratory experiments, such as those of Liu 2nd Maestrello
(1974) have determined the large-scale mean-flow characteristics accurately,
so these flow characteristics are reasonably chosen to be input to the
numerical computations. The numerical computations are then used to predict
the quadrupole moment distribution given the large-scale mean-flow character-
istics of the turbulence. Since the quadrupole source terms are dominated by
snall-scale motions and since the small-scale motions of turbulence are
determined by the local large-scale characteristics, it follows that

the acoustic source terms can be effectively determined by isolating

a small local section of the jet. This avoids the two difficulties

mentioned above. First, because a small section of the jet is being

simulated, it is not necessary to simulate at one time all twenty or
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so jet diameters in the downstream direction that contribute to the noise
generation by the jet. Second, within each loccl section o:r the jet, it is
most reasonable to impose periodic boundary conditions because only local
turbulence is being studied. The turbulence witlin each jet section is,
however, strongly affected by the mean flow characteristics that are imposed,
the lacter being those appropriate to the jet section being simulated.

In summary, the flow model involves the isolation of a local section of
the jet, imposition of periodic boundary conditions, maintenance for all
time of the experimentally observed mean-flow characteristics, and numerical
integration of th: Navier-Stokes equations in time until a statisrically
steady state is achieved. After evolving the flow in this way, the quadrupole
moments are extracted from the statistically steady turbulent state and used
in the manner described in Sec. 3 to determine the radiated acoustic field.

In accord with this flow model, the velocity field is expressed as
VE,e) = VE + V&, 0 (3

> -
where VU 1is the imposed mean velocity (constant for all time) and v' 1is
the fluctuating velocity. At all downstream locations the mean velocity

v is of the form
V@E) = Uenx, (4)

where Ql is a unit vector in the 3] direction , r 1is the distance from
the jet axis, and U(r) 1is the experimentally determined profile (see Fig. 1).
The Navier-Stokes equations are integrated by expressing the velocity

field in terms of (special) Fourier series of the form

v(x,t) = Z Z E a(k,t)exp(2mik - %) . (5)

ey f<ky [k, [<kp ky | <y

in fact, the Fourier expansion (5) is specialized so that the velocity field
that is represented has zero stress boundary conditions imposed on the x,
and X3 boundaries; these latter boundary conditions are a convenient way of
handling the potential flow outside the jet without imposition of complicated
entrainment boundary conditions. Altogether, 32,768 independent Fourier
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components are used to represent each component of the velocity field, so
that about 105 independent data are used to represent the complete flow
field. The nume:ical solution of the Navier-Stokes equations proceeds by
using the Fourier representation (5) together with the fast Fourier transform
to allow efficient evaluation of derivatives appearing in the equations.
Time-stepping is performed by a fractional step technique in which leapfrog
differencing is used to evaluate the nonlinear terms in (1) and Crank=-
Nicolson implicit differencing is used to evaluate the viscous terms. A
semi-implicit scheme for the evaluation of the nonlinear terms is described
in Sec. 4.

The mean velocity profile U(r) in (5) was chosen to correspond to the
experimentally determined profile of an axisymmetric cold subsonic j2t, as
parametrized by Maestrello, et al. (1974). This velocity profile is p’otted
in Fig. 2 at three downstream locations, 4, 8, and 12 jet diameters
downstream. .Alsc, the mean turbulent intensities and their radial variation
is imposed following the parametrization of Liu and Maestrello (1974); the
radial variation of the rms turbulent intensity at 4, 8, and 12 jet diameters
downstream is plotted in Fig. 3.

In order to give perspective on the degree of complicacion of the
velocity field in these calculations, in Figs. 4 and 5 contours of the

x, component of the velocity field for the simulation performed at L2

1
ciameters downstream from the jet exit are plotted. In Fig. 4, the contours

of v are plotted in the xz-x3 plane at x, = 12 diameters at t = 0.32 ,

1
after a statistically steady state has been achieved. In Fig. 5, the

contours of v, are plotted at the same time of evolution in the «x

plane passing through the center of the jet.
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3. Radiated Sound Field From a Turbulent Jet

According to Lighthill's theory (1952) of aerodynamic sound generation,

the sound radiated by turbulence satisfies the inhomogeneous wave equation

2
a_.'z - CZVZO =

atz axiaxj Tij 2 0(x,t) (6)

where

Ty 5 (n

J = Dov-v

i ’
Here Po = 1 is the unperturbed (non-acoustic) density in the flow field

while p(;,c) is the fluctuating density field, i.e., the radiated acous:ic
field. The solution to (6) that satisfies the outgoing radiation condition

at « 1is

Lo [ afs.e- 122 2E ®

el

which is Lighthill's integral solution for the radiated sound field.

In the work reported here, the Lighthill integral solution (8) has
been used to determine acoustic radiation characteristics similar to those
measured by Maestrello (1973) in a careful analysis of the radiation patterns
of a turbulent jet. Maestrello measured the correlation coefficient of

derivatives of the pressure:

- - > 3p p > >
Rvn,Vp(x)t;x+Ytt+T) = S‘E(X,C) 3%(X+y,t+t) (9)

where the derivatives are taken along the radial direction normal to the jet

axis and the overbar indicates average. Maestrello reported extensive

measurements of RVP:VP for various separation vectors ; and time shifts <.
It is possible to use the Lighthill integral (8) to obtain an explicit

expression for RV 7 in terms of the source distribution T,,. To do this,

it must be noted that Vp = ¢ V¢ 1in the acoustic field so that Rvp Tp

can be computed by correlating gradients of (8). In particular, it follows

that
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Ryp,7p (Ko tsX +7, 04 7)

d?l d‘y’?_ ) (10)

Expression (10) 1s used to cbtain the principal results reported belcw.

Before proceeding to report these results, a simple arzument can be
made to establish the essential features of the correlation (10). Assume
that jet turbulence has a local spatial correlation scale L and a local
tire correlation scale T . Also assume that the local field of turbulence
is cenvected at the large speed U of the jet past a fixed frame of

reference. In that case the intogrand of (10) differs significantly from

Tij(yl,Ll) Tkl(yz,tz) , i.e., the uncorrelated average of the source terms,
only if |yl - yzl £ L and

cT + %? < T
where D 1s the jet diameter. Assume R = |x| = |x + y| >> D so that
the two observation points lie on the same cylindrical sleeve around the
turbulent jet and both points lie in the far field of the radiation pattern.
Here £ = {;I is the distance between the two observation points. If it is
further assumed that the turbulence scale L 1Is a constant fraction of the
local jet diameter D , some interesting scaling conclusions may be drawn.
First, the correlation (10) should decay to zero in a time scale proportional
to T(l - ¢c8M) where ¢ 1is a constant, 9 {is the angular separation
between x and x +y (8 = I/R, where R = |x + y| = l;l), and M = U/c is
the local jet Mach number. Second, equal time correlations T = 0 should

decay to zero over a distance

(11)

Kl
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where 6 1is the angular separation of ; and ; + ; . It will be interesting
to determine whether the correlations determined experimentally behave azcording
to (11) in the far field. It seems that the data of Maestrello (1973) does not
yet provide sufficient information to test (l1). Equation (11) has not yet
been tested against the present numerical data, although it is certainly
possible to do this. However, it seems that (11) is built into the present
numerical scheme automatically because (10) is assumed to be true. Equation
(1) follows from (10), as shown above, by very crude turbulence theory
arguments, which seem to be well satisfied by the numerical simulations.

The experimental configuration for Maestrello's (1973) measurements was
a 213 m/s cold jet with exit diameter 0.0625 m. Maest.ello made measurements
at a number of downstream stations as illustrated in Fig. 6. Here, the
numerical simulation of his results for station 5 (for which the most data
is available) has been attempted. Station 5 of the laboratory experimeri is
at 7.42 diameters downstream from the jet exit, and the numerical simulation
consists of isolating a jet section at 8 diameters downstream. The acoustic
field is then determined along a cylind:ical sleeve whose axis is aligned with
the jet axis and whose radius is 5 local 2t diameters (radius 46 cm).

The numerical computations of R,

P,Vp
ential separation of two points on the measuring cylinder at the same axial

(§,7) , where 7 18 the circumfer-

distance downstream and T 1is the time separation between the measurements,
were performed as follows. First, the statistically steady turbulent flow

at 8 jet diameters downstream was calculated as described in Sec. 2. The
computational domain extended over three jet diameters in the downstream
direction. Second, the quadrupole source distribucions resulting from these
calculations was substituted into the Lighthill integral (8) and the acoustic
field was determined over the whole cylindrical sleeve about the jet. In
performing the latter computation, the local Mach number was assumed to be

the same as for the 213 m/s jet studied by Maestrello. It was also assumed
that no significant contributions to the acoustic field come from regions of
the jet more distant than the present computational domain, i.e., more distant
than 3 jet diameters from the local position in the axial direction. After
finding the acoustic field in this way, the correlation RVP'VP(E.T) was found

PBusir..o: -



Flow Research Report No. 62
February 1976

- 8-

by averaging the results for all available points with the given space and
time separations over the cylindrical sleeve (this average being justified
by the axisymmetry of the flow) and over time (this average being justified
by the statistical stationarity of the flow).

The results for the correlation RVp,Vp(E’T) at station 5 are showm
in Fig. 7. These results bear some striking simflarity to Maestrello's
results, but they are also in substantial disagreement. The general
structure of the correlations is very similar to those measured by
Maestrello (see his Fig. 14 reproduced here as Fig. 8). The correlations
have significant negative regions; they decay to zero rapidly with increasing
£ and T . However, there are some significant discrepancies. First,
Maestrello's data does not show the symmetry of the numerical data plotted
in Fig. 7; this symmetry 1is built into the numerical experiments to high
accuracy because of the way the average RVp,Vp is obtained. The numerical
data do not show any displacement of the correlation peak as a function of
g . Also, the time scale over which the numerical correlations decay to
zero 1s about twice as long as the time scale over which the experimental
data decays to zero.

Ther> are several possible explanations for these discrepancies between
the numerical and laboratory data. If it is assumed that there are no
systematic experimental errors (which seems fully justified by recent
repetitions «f the experiments), one must conclude that the discrepancies
are due to either: (i) a Reynolds number effect (since the Reynolds number
of the simulations is an order of magnitude less than that of the experi-
ments); (11) the effect of the simplified boundary conditions in the flow
model; (1ii1) an effect of compressibility; (iv) an effect of departures
from statistical stactionarity in the numerical simulations; (v) an effect
of lack of computer resolution in performing the averages or integrals,;
or (vi) a measure of the inaccuracy of Lighthill's integral (8) for the
radiaced sound. Of all these possibilities, it is believed that the most
likely causes of the error are (ii), (iv), (1), (vi), (v), (iii), in order
of decreasing likelihood. However, it is not possible to state with
certainty at this time the precise cause of the quantitative discrepancies.

In summary, the qualitative nature of the radiated sound field bears
good relation to the experiments of Maestrello (1973), but there is some

quantitative disagreement. Nevertheless, there is ample ground
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for believing that a high-resolution numerical experiment, say one
performed on an advanced scientific computer like the CDC STAR, will give
both good quantitative and qualitative agreement with laboratory (and

field) experiment.
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4, Numerical Methods

Three major modifications have been made to the numerical methods used
by Metcalfe and Orszag (1975) in order to improve the flow model for
turhulent jet flow. These improvements are: (i) a semi-implicit treatment
of the nonlinear terms; (ii) modification of the incompressible flow
program to treat isentropic compressible flow; and (1i1i) inclusion of
nonlinear eddy viscosity in the code. These modifications will now Le

discussed in order.

4.1 Semi-Implicit Treatment of the Nonlinear Terms

The most severe restriction on the size of time steps in the uumerical
calculations reported by Metcalfe and Orszag (1975) is due to the convective
stability restrictions originating from the large axial jet velocity: 1if
the maximum jet velocity is U and the axial grid (or Fourinr) resolution
is Ax , then time steps in an explicit time integration scheme are
restricted by At < Ax/U .

Metcalfe and Orszag (1975) have developed a method that significantly
relaxes the above time-stepping restriction to A4t < Ax/vrms where Vrms
is the rms turbulent velocity. Since vrms-U/5 , the new time stepping
scheme allows time 3teps that are scveral times large than those without
the semi~implicit scheme.

The technique for implementing the semi~-implicit scheme i{s to split the
total velocity into two parts:

Tev+ (12)
where v is the mean axial flow and ;' is the fluctuating velocity. The
nonlinear term vepresenting the advection of v by V 1s treated implicitly,
while the nonlinear term involving the advection of v by v' is treated
explicitly. Thus, the semi-implicit treatment of the nonlinear terms

involves the solution of the implicit equation

v v

in which ¢V ard f are known. The implicit solution of (13) is easily done
in the spectral representation in x; because the mean velocity V is
independent of 3 in cthe flow model. Thus, if k {s the Fourier variable

L e

T
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conjugate to the coordinate X the solution to (13) using Crank-Nicolson
time~-differencing is simply

V(K xg k50t H0E) = [T(kyxgyxq,0) + eE(z4dar) - %—ikV(r)At;(k,xz,xJ,t)]/

1+ %1'« V(r)at) . (14)

4.2 Isentropic Compressible Flow

The compressible flow equations for isentropic flow in a polytropic gas

are

+ ‘\; . V; = -.V’p + vlvzv + Vo -7.(6 . ;) (15)

%4-3-%4»;:6-3-0 (16)

p =Ko, (17)

The method of solution (15)-(17) 1is very similar to that of (1)=-(2).
All flow variables are expanded in the Fourier series (5), which is used to
effect the evaluation of derivatives appearing in (15)-(l7). The necessary
modifications in the codes have been made to implement simulations with
32 » 32 x 32 Fourier components used to resolve each of the flow variables.
The running time is 8s per time step.

Preliminary studies have been made of another modification in this
compressible flow code, viz. the inclusion of non-isentropic flow effects.
Gottlieb and Orszag (1976) nave studied the accuracy and efficiency of the
spectral methods used in the jet flow simulacions for the calculation of
highly compressible flows with shocks. The results of these calculations
are encouraging in the sense that shocks can be resolved ac:urately with very
few dynamical degrees of freedom i{f localized dissipation is fuposed in the
neighborhood of the shock.

4.3 Nonlinear Eddy Viscosity
The codes developed by Metcalfe and Orszag (1975) hava been modified to

{nclude the effect of subgrid scale turbulence by means of a nonlinear eddy
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viscosity similar to that employed by Deardorff (1970) and others. Deardorff
(1970} has modeled subgrid scale effects by including a term with an eddy
coefficient proportional to the local velocity deformation. 1In the simula-
tions reported here, subgrid scale turbulence has been modz=led by adding a
term to equation (1) that is proportional to the root mean square vorticity.
The simulation of the jet flow at 8 diameters downstream from the jet exit
has been repeated, using this modified form of energy dissipation. The
results of this simulation are quite striking. When veloccity contours of

the two simulations are compared there is no noticeable difference at the
computation time of 0.032, which is in the interval of times used for the
calculations reported in Sec. 3. It is concluded that there is no significant
Reynolds number effect on the velocity fields used for the numerical simula-
tions. However, there may still be a Reynolds number effect on the quadruple
moment fields used for the acoustic source field; comparisons of the
simulations of Metcalfe and Orszag (1975) with the simulation made using the
nonlinear eddy viscosity are inconclusive on this latter point. The Reynolds
number variation of the quadrupole moment ficlds are still a matter of

research interest, which will be studied with the use of these codes.
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5. Summar

This report has discussed the progress in the numerical simulation of
jet turbulence and aerodynaric noise radiated by jets. It is believed that
a significant breakthroug* . he numerical simulation of a turbulent jet's
noise radiation pattern ' is been achieved. The results plotted in Fig. 7
show good qualitative agreement with those determined experimentally (plotted
in Fig. 8) despite the limited computer resolutic.. of the present computations.
This is not a trivial accomplishment; for example, if a ring vortex model is
used to simulate the quadrupole moment field of a turbulent jet, the radiation
f.eld is axisymmetric and perfectly correlated around the jet. There is no
decorrelation with increasing £ ia a ring vortex model. Nevertheless,
solution of the three-~dimensional Navier-Stokes equations, even with the
limited flow model presented here, gives striking confirmation of the
experimental results. It should be expected that improvements in the flow
model and increased computer resolution will improve the quantitative agreement
between numerical and laboratory and field experiments.

Finally, in Sec. 4 the improvements made in the flow model and in the
numerical techniques for its solution have been summarized. As mentioned
earlier, the principal area for further improvement involves the treatment
cf the boundary conditions. However, improvements of the treatment or the
boundary conditions will require substantially more computer resolution than
presently available. It will not be possible tc isolate a small section of
the jet to be simulated independently of other sections of the jet; it will
not be possible to neglect effects of entrainment of fluid from infinity or
effects at tle jet exit. It seems that such substantial improvement of the

flow model must await the next generation of powerful computers.

[T SN
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Figure 4. Contour plot of vl(xl,xz,x3) in the plane xl=%L

at X = 12 diameters downstream from the jet exit.
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at X=12 diameters downstream from the jet exit. Here t = ,032s

is the time of evolution.
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